Информационная безопасность компьютерных систем и защита конфиденциальных данных
SecuRRity.Ru » Термины » Хеширование
Термины

Хеширование

автор: Administrator | 24 июня 2010, 12:53 | Просмотров: 8600
теги: Термины, Хеширование



Хеширование Хеширование (иногда хэширование, англ. hashing) — преобразование входного массива данных произвольной длины в выходную битовую строку фиксированной длины. Такие преобразования также называются хеш-функциями или функциями свёртки, а их результаты называют хешем, хеш-кодом или дайджестом сообщения (англ. message digest).

Хеширование применяется для сравнения данных: если у двух массивов хеш-коды разные, массивы гарантированно различаются; если одинаковые — массивы, скорее всего, одинаковы. В общем случае однозначного соответствия между исходными данными и хеш-кодом нет в силу того, что количество значений хеш-функций меньше чем вариантов входного массива; существует множество массивов, дающих одинаковые хеш-коды — так называемые коллизии. Вероятность возникновения коллизий играет немаловажную роль в оценке качества хеш-функций.

Существует множество алгоритмов хеширования с различными характеристиками (разрядность, вычислительная сложность, криптостойкость и т. п.). Выбор той или иной хеш-функции определяется спецификой решаемой задачи. Простейшими примерами хеш-функций могут служить контрольная сумма или CRC.



Контрольные суммы

Несложные, крайне быстрые и легко реализуемые аппаратные алгоритмы, используемые для защиты от непреднамеренных искажений, в том числе ошибок аппаратуры.

По скорости вычисления в десятки и сотни раз быстрее, чем криптографические хеш-функции, и значительно проще в аппаратной реализации.

Платой за столь высокую скорость является отсутствие криптостойкости — лёгкая возможность подогнать сообщение под заранее известную сумму. Также обычно разрядность контрольных сумм (типичное число: 32 бита) ниже, чем криптографических хешей (типичные числа: 128, 160 и 256 бит), что означает возможность возникновения непреднамеренных коллизий. Простейшим случаем такого алгоритма является деление сообщения на 32- или 16- битные слова и их суммирование, что применяется, например, в TCP/IP.

Как правило, к такому алгоритму предъявляются требования отслеживания типичных аппаратных ошибок, таких, как несколько подряд идущих ошибочных бит до заданной длины. Семейство алгоритмов т. н. «циклических избыточных кодов» удовлетворяет этим требованиям. К ним относится, например, CRC32, применяемый в аппаратуре Ethernet и в формате упакованных файлов ZIP.



Криптографические хеш-функции

Среди множества существующих хеш-функций принято выделять криптографически стойкие, применяемые в криптографии. Для того, чтобы хеш-функция H считалась криптографически стойкой, она должна удовлетворять трем основным требованиям, на которых основано большинство применений хеш-функций в криптографии:
  • Необратимость: для заданного значения хеш-функции m должно быть вычислительно неосуществимо найти блок данных X, для которого H(X) = m.

  • Стойкость к коллизиям первого рода: для заданного сообщения M должно быть вычислительно неосуществимо подобрать другое сообщение N, для которого H(N) = H(M).

  • Стойкость к коллизиям второго рода: должно быть вычислительно неосуществимо подобрать пару сообщений (M, M'), имеющих одинаковый хеш.

Данные требования не являются независимыми:
  • Обратимая функция нестойка к коллизиям первого и второго рода.

  • Функция, нестойкая к коллизиям первого рода, нестойка к коллизиям второго рода; обратное неверно.

Следует отметить, что не доказано существование необратимых хеш-функций, для которых вычисление какого-либо прообраза заданного значения хеш-функции теоретически невозможно. Обычно нахождение обратного значения является лишь вычислительно сложной задачей.

Атака «дней рождения» позволяет находить коллизии для хеш-функции с длиной значений n битов в среднем за примерно 2n/2 вычислений хеш-функции. Поэтому n-битная хеш-функция считается криптостойкой, если вычислительная сложность нахождения коллизий для неё близка к 2n/2.

Для криптографических хеш-функций также важно, чтобы при малейшем изменении аргумента значение функции сильно изменялось (лавинный эффект). В частности, значение хеша не должно давать утечки информации даже об отдельных битах аргумента. Это требование является залогом криптостойкости алгоритмов хеширования, хеширующих пользовательский пароль для получения ключа



Применение хеш-функций

Хеш-функции также используются в некоторых структурах данных — хеш-таблицаx, фильтрах Блума и декартовых деревьях. Требования к хеш-функции в этом случае другие:
  • хорошая перемешиваемость данных
  • быстрый алгоритм вычисления

Сверка данных
В общем случае это применение можно описать, как проверка некоторой информации на идентичность оригиналу, без использования оригинала. Для сверки используется хеш-значение проверяемой информации. Различают два основных направления этого применения:
  1. Проверка на наличие ошибок — Например, контрольная сумма может быть передана по каналу связи вместе с основным текстом. На приёмном конце, контрольная сумма может быть рассчитана заново и её можно сравнить с переданным значением. Если будет обнаружено расхождение, то это значит, что при передаче возникли искажения и можно запросить повтор.

    Бытовым аналогом хеширования в данном случае может служить приём, когда при переездах в памяти держат количество мест багажа. Тогда для проверки не нужно вспоминать про каждый чемодан, а достаточно их посчитать. Совпадение будет означать, что ни один чемодан не потерян. То есть, количество мест багажа является его хеш-кодом. Данный метод легко дополнить до защиты от фальсификации передаваемой информации (метод MAC). В этом случае хеширование производится криптостойкой функцией над сообщением, объединенным с секретным ключом, известным только отправителю и получателю сообщения. Таким образом, криптоаналитик не сможет восстановить код, по перехваченному сообщению и значению хеш-функции, то есть, не сможет подделать сообщение.

  2. Ускорение поиска данных — Например, при записи текстовых полей в базе данных может рассчитываться их хеш код и данные могут помещаться в раздел, соответствующий этому хеш-коду. Тогда при поиске данных надо будет сначала вычислить хеш-код текста и сразу станет известно, в каком разделе их надо искать, то есть, искать надо будет не по всей базе, а только по одному её разделу (это сильно ускоряет поиск).

    Бытовым аналогом хеширования в данном случае может служить помещение слов в словаре по алфавиту. Первая буква слова является его хеш-кодом, и при поиске мы просматриваем не весь словарь, а только нужную букву.




источник:
ru.wikipedia.org
Обратная связь

Информация


Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.